From Research to Mainstream: An unbridgeable gap?

Dr Moses Jenkins MCIOB

The issue still being grappled with, how do we improve this building stock...

Whilst avoiding this....

We have the knowledge and research base, but is this translating into mainstream retrofit / construction sector?

Obstacles to mainstream adoption of appropriate measures

- Certification of methods and materials
- Training of contractors
- Training of specifiers / designers etc
- Standards and their application
- Government policy and targets
- Sustainability of retrofit / carbon cost

Government Policy and funding, part of the problem or part of the solution?

- A limited range of materials receive funding, installed by a limited range of companies
- "The Government has a target to upgrade around one million homes through Eco and other Government domestic energy efficiency schemes."
- Scottish Government Skills Matrix (which includes the Level 3 Award) potentially a good step in the right direction if adopted

Warranties / testing / certification

- There does not appear to be consistency of approach regarding warranties between funding streams
- ECO currently has a requirement for a 25 year warranty for certain measures
- Non ECO work 10-12 year warranty typicly
- Is testing fit for purpose? BBA certificates / Grenfell
- This can all act as a barrier to the mainstreaming of appropriate measures

Targets mostly based around EPC bands, what have we learned?

- A more detailed survey can give a better rating
- Accurate measurement can give a better rating
- Record all retrofit work that is done in sufficient detail to be recorded on EPC
- Unexpected factors such as an infrared heating panel can cost SAP points which can be the difference between a C and a D
- Do we need to pay more for a more accurate survey?


Meeting Building Standards in Scotland – can be done with vapour open materials (for now...)

Type of element	Area-weighted average U-value (W/m²K) for all elements of the same type			HES Case Study Result Achieved
	(a) Maximum U-values for conversion of heated buildings	b) Maximum U-values for conversion of unheated buildings	(c) Individual element U- Value (W/m ² K)	
Wall (Solid)	0.3	0.22	0.70	0.15 80mm cellulose (KoC) 0.19 80mm WFB (Kild) 0.22 100mm Hemp (SS) 0.29 100mm cellulose (SS) 0.3 50mm bonded bead (Laur) 0.32 50mm bonded bead (SS) 0.32 50mm Aerogel Board (SS)

Interpretation of Standards critical - The standard for condensation for not mandate a vapour barrier, control of condensation can be met by using vapour open / humidity buffering materials

If standards seek ever lower u-values does the condensation / decay risk increase?

Insulated lime plaster... certification?, warranty? EPC?

Who is looking at solutions around renewables / services? Ground Source Heat Pump in A listed vernacular building

Developing and implementing the principles of "Sustainable Retrofit"

- Technical compatibility with traditional fabric
- Upgrade of existing fabric (adding not removing)
- Durability and resilience of interventions
- Ventilation and Indoor air quality
- Measures able to withstand a changed climate
- Carbon impact of measures is understood
- Upgrade materials that sequester carbon
- The building is in good condition.....

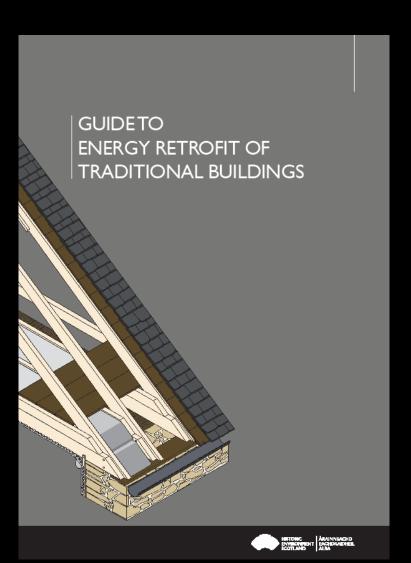
"sustainable" refurbishment? Circular Economy?

Training of installers, the NOS are in place...

- New NOS for Insulation and Building Treatment operatives, now mainly at level 3
- New retrofit pathways for construction site managers and supervisors at level 6 and 4 respectively
- Will lead to new qualifications but will the retrofit industry adopt these, some evidence that they wont
- Level 3 Award in Energy Efficiency Measures for Older and Traditional Buildings being delivered

The NOS are a good foundation but not enough on their own to bring about mainstreaming

- Training for operatives needs to move into a college / external training setting
- Training and education must be independent of material suppliers as with other sectors of the construction industry
- What about designers and professionals?
 Training, CPD, delivered by whom?


What do we need to do?

- Work together (PAS 2038 shows what can be done)
- Support the development of training and education at all levels, beyond just influencing NOS
- Work to ensure warranties / funding / standards offer opportunities not barriers
- Investment is needed at all stages of the process to make traditional buildings more energy efficient using appropriate methods and materials
- Traditional buildings are sustainable but need a careful and considered approach to see them achieve another 100+ years of use

Holyrood Park Lodge, Category B listed building in Holyrood Park, Edinburgh, built 1860's, EPC B

The gap can be bridged, but needs a co-ordinated approach

Moses.jenkins@hes.scot